

OPA314 OPA2314 OPA4314

SBOS563 - MAY 2011

3-MHz, Low-Power, Low-Noise, RRI/O, 1.8-V CMOS Operational Amplifier

Check for Samples: OPA314, OPA2314, OPA4314

FEATURES

- Low I_{0} : 190 μ A/ch (max)
- Wide Supply Range: 1.8 V to 5.5 V
- Low Noise: 14 nV/ \sqrt{Hz} at 1 kHz
- Gain Bandwidth: 3 MHz
- Low Input Bias Current: 0.2 pA
- Low Offset Voltage: 0.5 mV
- **Unity-Gain Stable**
- Internal RF/EMI Filter
- **Extended Temperature Range:** -40°C to +125°C

APPLICATIONS

- **Battery-Powered Instruments:**
 - Consumer, Industrial, Medical
 - Notebooks, Portable Media Players
- **Photodiode Amplifiers**
- **Active Filters**
- **Remote Sensing**
- Wireless Metering
- Handheld Test Equipment

DESCRIPTION

The OPA314 family of single, dual, and guad channel operational amplifiers represents a new generation of low-power, general-purpose CMOS amplifiers. Rail-to-rail input and output swings, low quiescent current (150 µA typ) combined with a wide bandwidth of 3 MHz, and very low noise (14 nV/ \sqrt{Hz} at 1 kHz) make this family very attractive for a variety of battery-powered applications that require a good balance between cost and performance. The low input bias current supports applications with mega-ohm source impedances.

The robust design of the OPA314 devices provides ease-of-use to the circuit designer: unity-gain stability with capacitive loads of up to 300 pF, an integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high ESD protection (4-kV HBM).

These devices are optimized for low-voltage operation as low as +1.8 V (±0.9 V) and up to +5.5 V (±2.75 V), and are specified over the full extended temperature range of -40°C to +125°C.

The OPA314 (single) is available in both SC70-5 and SOT23-5 packages. The OPA2314 (dual) is offered in SO-8, MSOP-8, and DFN-8 packages. The quad-channel OPA4314 is offered in a TSSOP-14 package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

OPA314 OPA2314 OPA4314 SBOS563-MAY 2011

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING				
004314	SC70-5	DCK	TBD				
OPA314	SOT23-5	DBV	TBD				
OPA2314	SO-8	D	TBD				
	MSOP-8	DGK	TBD				
	DFN-8	DRB	TBD				
OPA4314	TSSOP-14	PW	TBD				

PACKAGE INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATING⁽¹⁾

Over operating free-air temperature range, unless otherwise noted.

		OPA314, OPA2314, OPA4314	UNIT
Supply voltage		7	V
	Voltage ⁽²⁾	(V–) – 0.5 to (V+) + 0.5	V
Signal input terminals	Current ⁽²⁾	±10	mA
Output short-circuit ⁽³⁾		Continuous	mA
Operating temperature, T _A		-40 to +150	°C
Storage temperature, T _{stg}		–65 to +150	°C
Junction temperature, T_J		+150	°C
	Human body model (HBM)	4000	V
ESD rating	Charged device model (CDM)	1000	V
	Machine model (MM)	200	V

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current limited to 10 mA or less.

(3) Short-circuit to ground, one amplifier per package.

ELECTRICAL CHARACTERISTICS: $V_s = +1.8 V$ to +5.5 V⁽¹⁾

Boldface limits apply over the specified temperature range: $T_A = -40^{\circ}C$ to $+125^{\circ}C$. At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, $V_{CM} = V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.

			OPA314, OPA2314, OPA4314			
	PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET	/OLTAGE		4			
V _{OS}	Input offset voltage	$V_{CM} = (V_{S}+) - 1.3 V$		0.5	2.5	mV
dV _{os} /dT	vs Temperature			2		μ ٧/°C
PSRR	vs Power supply	$V_{CM} = (V_{S}+) - 1.3 V$	80	100		dB
	Over temperature		74	96		dB
	Channel separation, dc	At dc		10		μV/V
INPUT VC	DLTAGE RANGE					
V _{CM}	Common-mode voltage range		(V–) – 0.2		(V+) + 0.2	V
OMDD	Or many and the sector stick and is	$V_{\rm S}$ = 1.8 V to 5.5 V, (V _S -) – 0.2 V < V _{CM} < (V _S +) – 1.3 V	75	96		dB
CMRR	Common-mode rejection ratio	$V_{\rm S}$ = 5.5 V, $V_{\rm CM}$ = –0.2 V to 5.7 V $^{(2)}$	60			dB
		V_{S} = 1.8 V, (V_{S}) - 0.2 V < V_{CM} < (V_{S} +) - 1.3 V	70	86		dB
	Over temperature	$V_{S} = 5.5 \text{ V}, (V_{S}-) - 0.2 \text{ V} < V_{CM} < (V_{S}+) - 1.3 \text{ V}$	74	90		dB
		$V_{\rm S}$ = 5.5 V, $V_{\rm CM}$ = -0.2 V to 5.7 V ⁽²⁾	54	60		dB
INPUT BI	AS CURRENT					
IB	Input bias current			±0.2	±10	рА
• • • •		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±50	pА
	Over temperature	$T_A = -40^{\circ}C$ to $+125^{\circ}C$			±500	pА
I _{OS}	Input offset current			±0.2	±10	рА
Over temperature		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±50	pА
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$			±500	pА
NOISE						
	Input voltage noise (peak-to-peak)	f = 0.1 Hz to 10 Hz		5		μV _{PP}
		f = 10 kHz		13		nV/√Hz
e _n	Input voltage noise density	f = 1 kHz		14		nV/√Hz
i _n	Input current noise density	f = 1 kHz		5		fA/√Hz
INPUT CA	PACITANCE					
0	Differential	V _S = 5.0 V		1		pF
CIN	Common-mode	V _S = 5.0 V		5		pF
OPEN-LO	OP GAIN					
		$V_{\rm S}$ = 1.8 V, 0.2 V < $V_{\rm O}$ < (V+) – 0.2 V, R _L = 10 k Ω	90	110		dB
		$V_{\rm S}$ = 5.5 V, 0.2 V < $V_{\rm O}$ < (V+) – 0.2 V, R _L = 10 k Ω	100	120		dB
MOL	Open-Loop voltage Gain	$V_{\rm S}$ = 1.8 V, 0.5 V < $V_{\rm O}$ < (V+) – 0.5 V, R _L = 2 k $\Omega^{(2)}$	84	100		dB
		$V_{S} = 5.5 \text{ V}, 0.5 \text{ V} < V_{O} < (V+) - 0.5 \text{ V}, R_{L} = 2 k \Omega^{(2)}$	94	110		dB
	Over temperature	V_{S} = 5.5 V, $\overline{0.2}$ V < V_{O} < (V+) – 0.2 V, R_{L} = 10 k Ω	90	110		dB
		V_{S} = 5.5 V, 0.5 V < V_{O} < (V+) $-$ 0.2 V, R _L = 2 k Ω		100		dB
	Phase margin	$V_{c} = 5.0 \text{ V}$, $G = +1$, $R_{1} = 10 \text{ k}\Omega$		65		dea

(1) Parameters with MIN and/or MAX specification limits are 100% production tested at +25°C, unless otherwise noted. Over temperature limits are based on characterization and statistical analysis.

Specified by design and/or characterization; not production tested. (2)

ELECTRICAL CHARACTERISTICS: $V_s = +1.8 V$ to +5.5 V⁽¹⁾ (continued)

Boldface limits apply over the specified temperature range: $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

At $T_A = +25 \text{ °C}$, $R_L = 10 \text{ k}\Omega$ connected	to $V_S/2$, $V_{CM} = V_S/2$, and $V_{OUT} = V_S/2$, unless of	herwise noted.

PARAMETERS			OPA314, OI	PA2314, OPA	A4314	
		TEST CONDITIONS	MIN	TYP	MAX	UNIT
FREQUE	NCY RESPONSE	•	•			
		$V_{S} = 1.8 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega, \text{ C}_{L} = 10 \text{ pF}$		2.7		MHz
GBW	Gain-bandwidth product	$V_{S} = 5.0 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega, \text{ C}_{L} = 10 \text{ pF}$		3		MHz
SR	Slew rate ⁽³⁾	V _S = 5.0 V, G = +1		1.5		V/µs
		To 0.1%, V _S = 5.0 V, 2-V step , G = +1		2.3		μs
t _S	Settling time	To 0.01%, V _S = 5.0V, 2-V step , G = +1		3.1		μs
	Overload recovery time	$V_{S} = 5.0 \text{ V}, V_{IN} \times \text{Gain} > V_{S}$		5.2		μs
THD+N	Total harmonic distortion + noise ⁽⁴⁾	V_{S} = 5.0 V, V_{O} = 1 V_{RMS} , G = +1, f = 1 kHz, R _L = 10 k Ω		0.001		%
OUTPUT			L			
		$V_{S} = 1.8 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$		5	15	mV
	Voltage output swing from supply rails	$V_{S} = 5.5 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$		5	20	mV
vo		$V_{S} = 1.8 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$		25	50	mV
		$V_{S} = 5.5 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$		40	60	mV
Over temperature		$R_{L} = 10 \text{ k}\Omega$			30	mV
		$R_L = 2 k\Omega$		60		mV
I _{SC}	Short-circuit current	V _S = 5.0 V		±20		mA
R _O	Open-loop output impedance			600		Ω
POWER S	SUPPLY		•			
Vs	Specified voltage range		1.8		5.5	V
		$V_{S} = 1.8 \text{ V}, I_{O} = 0 \text{ mA}$		130	180	μA
lQ	Quescent current per ampliner	$V_{S} = 5.0 \text{ V}, I_{O} = 0 \text{ mA}$		150	190	μA
	Over temperature	$V_{S} = 5.0 V, I_{O} = 0 mA$			220	μΑ
	Power-on time	$V_{S} = 0 V$ to 5 V, to 90% I_{Q} level		44		μs
TEMPERA	ATURE					
	Specified range		-40		+125	°C
	Operating range		-40		+150	°C
	Storage range		-65		+150	°C

Signifies the slower value of the positive or negative slew rate. Third-order filter; bandwidth = 80 kHz at -3 dB. (3)

(4)

4 Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

THERMAL INFORMATION: OPA314

		OPA	OPA314		
	THERMAL METRIC ⁽¹⁾	DBV (SOT23)	DCK (SC70)	UNITS	
		5 PINS	5 PINS		
θ_{JA}	Junction-to-ambient thermal resistance	228.5	281.4		
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance	99.1	91.6		
θ_{JB}	Junction-to-board thermal resistance	54.6	59.6	°C 44/	
Ψ _{JT}	Junction-to-top characterization parameter	7.7	1.5	C/VV	
Ψјв	Junction-to-board characterization parameter	53.8	58.8		
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance	N/A	N/A		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

THERMAL INFORMATION: OPA2314

			OPA2314				
	THERMAL METRIC ⁽¹⁾	D (SO)	DGK (MSOP)	DRB (DFN)	UNITS		
		8 PINS	8 PINS	8 PINS			
θ_{JA}	Junction-to-ambient thermal resistance	138.4	191.2	53.8			
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance	89.5	61.9	69.2			
θ_{JB}	Junction-to-board thermal resistance	78.6	111.9	20.1	°C (M)		
Ψ_{JT}	Junction-to-top characterization parameter	29.9	5.1	3.8	C/W		
Ψ_{JB}	Junction-to-board characterization parameter	78.1	110.2	20.0			
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance	N/A	N/A	11.6			

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

THERMAL INFORMATION: OPA4314

		OPA4314	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNITS
		14 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	121.0	
θ _{JC(top)}	Junction-to-case(top) thermal resistance	49.4	
θ_{JB}	Junction-to-board thermal resistance	62.8	°C 144
Ψ _{JT}	Junction-to-top characterization parameter	5.9	C/W
Ψ _{JB}	Junction-to-board characterization parameter	62.2	
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance	N/A	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

(1) Pitch: 0,65mm.

(2) Connect thermal pad to V-. Pad size: 1,8mm × 1,5mm.

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
OPA2314AID	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI	
OPA2314AIDGKR	PREVIEW	MSOP	DGK	8		TBD	Call TI	Call TI	
OPA2314AIDGKT	PREVIEW	MSOP	DGK	8		TBD	Call TI	Call TI	
OPA2314AIDR	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI	
OPA2314AIDRBR	PREVIEW	SON	DRB	8		TBD	Call TI	Call TI	
OPA2314AIDRBT	PREVIEW	SON	DRB	8		TBD	Call TI	Call TI	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.

 \triangle The package thermal pad must be soldered to the board for thermal and mechanical performance.

A See the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated